7.7 Solve Right Triangles

- Before You used tangent, sine, and cosine ratios.
- You will use inverse tangent, sine, and cosine ratios.
- So you can build a saddle rack, as in Ex. 39.

To SOLVE A RIGHT TRIANGLE means to find the measures of all the sides and ______and

All the information that you need to solve (right triangle) are:

KEY CONCEPT For Your Notebook

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.

Inverse Tangent If $\tan A = \frac{x}{y}$, then $\tan^{-1} \frac{x}{y} = m \angle A$.

Inverse Sine If $\sin A = \frac{X}{Z}$, then $\sin^{-1} \frac{X}{Z} = m \angle A$.

Inverse Cosine If $\cos A = \frac{y}{2}$, then $\cos^{-1} \frac{y}{2} = m \angle A$.

 $\cos^{-1} \frac{y}{z} = m \angle A$

EXAMPLE 1 Use an inverse tangent to find an angle measure.

Use a calculator to approximate the measure of $\angle A$ to the nearest tenth of a degree.

- 1. What is $m\angle A$? ~ 36.9
- 2. How can you find m/C?

3. What is the length of AC?15 +20

- 5. What is the area of $\triangle ABC$?

EXAMPLE 2 Use an inverse sine and an inverse cosine

- 1. $\sin \Delta = 0.87$ 2. $\cos B = 0.15$ $m \angle A = \sin^{-1} . 87 \approx 60.5^{\circ}$ $m \angle B = \cos^{-1} . 15 \approx 81$

EXAMPLE 3 Solve a right triangle.

Solve the right triangle. Round decimal answers to the nearest tenth.

EXAMPLE 4

Solve a real-world problem.

THEATER DESIGN Suppose your school is building a raked stage. The stage will be 30 feet long from front to back, with a total rise of 2 feet. A rake (angle of elevation) of 5° or less is generally preferred for the safety and comfort of the actors. Is the raked stage you are building within the range suggested?

